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ABSTRACT

The reaction between methylenechlorophosphine-pentacarbonyltungsten and furan affords a [4 + 2] adduct whose oxygen bridge is broken
by BBr3, leading to a 2-alkoxyphosphinine after two additional steps.

Phosphinines play a central role in phosphorus heterocyclic
chemistry because they are the simplest aromatic species in
the field and are among the most efficient ligands for the
rhodium-catalyzed hydroformylation of olefins.1 Thus, there
is a constant need for new versatile synthetic methods
allowing tuning of their electronic and steric properties. Many
such methods have been described,2 but none uses one of
the fundamental heterocycles as a starting point. Such a
conversion would drastically increase the availability of
phosphinines. To put things in perspective, the Chemical
Abstracts data bank contains 1 715 000 entries related to
furan and its derivatives and only 2800 entries dealing with
phosphinines. We describe hereafter a route converting furans
into phosphinines. Some time ago, we synthesized methyl-
enechlorophosphine as a stable but reactive pentacarbonyl-
tungsten complex.3 This species easily reacts with furan at
0 °C to give almost quantitatively the [4 + 2] cycloadduct
2 as a mixture of two isomers (Scheme 1). The major one

(2a) has the tungsten in the exo position as shown by the
X-ray crystal structure analysis (Figure 1).

Upon reaction with boron tribromide in the cold, the
oxygen bridge of 2 is quantitatively cleaved to give 3. Two
pieces of information establish its structure. The OH appears
as a doublet of doublets at 2.95 ppm in CDCl3 with a JHP

coupling of 27.9 Hz. Also, the CHOH is strongly correlated
with the CHBr proton (COSY). The stereochemistry is only
tentative. Attempted direct dehydrohalogenation of 3 by Et3N
in the presence of Me3SiCl unexpectedly led to the ring-
expanded product (4) whose structure was established by
X-ray analysis (Figure 2).

It was thus necessary to protect the OH group to prevent
the ring expansion. This was done using dihydropyran. The
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Scheme 1. Cycloaddition of
Methylenechlorophosphine-pentacarbonyltungsten and Furan
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resulting protected product was then smoothly dehydroha-
logenated by triethylamine to give the expected 2-alkoxy-
phosphinine complex 5 (Scheme 2).

The phosphinine4 was purified by chromatography on
Al2O3 at -6 °C. The overall yield of phosphinine from furan
is ca. 60%. In view of the very mild conditions used
throughout this scheme, we expect a rather broad usefulness.
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(4) 5: 31P NMR (CDCl3) δ 138.2, 1JPW ) 262.4 Hz; 1H NMR (CDCl3)
δ 1.46-2.30 (m, 6H, CH2), 3.69 (m, 1H, OCH2), 3.88 (m, 1H, OCH2),
5.63 (br., 1H, OCHO), 7.39 (m, 1H, dCH), 7.51 (m, 1H, dCH), 7.75 (dd,
J ) 12.4 and 9.2 Hz, 1H, dCH), 8.31 (ddd, 1JHP ) 26.4 Hz, 3JHH ) 9.6
Hz, 4JHH ) 1.2 Hz, 1H, dCH-P); 13C NMR (CDCl3) δ 17.96 (s, CH2),
24.92 (s, CH2), 29.84 (s, CH2), 61.85 (s, OCH2), 97.93 (d, JCP ) 7 Hz,
OCHO), 122.15 (d, JCP ) 3 Hz, dCH), 128.96 (d, JCP ) 25 Hz, dCH),
131.06 (d, JCP ) 19 Hz, dCH), 150.60 (d, 1JCP ) 22 Hz, dCH-P), 181.61
(d, 1JCP ) 44 Hz, dC-P), 194.44 (d, 2JCP ) 9 Hz, cis-CO), 199.25 (d, 2JCP

) 31 Hz, trans-CO).

Figure 1. X-ray structure of 2a.

Figure 2. X-ray structure of 4.

Scheme 2. Conversion of the [4 + 2] Cycloadducts into
Phosphinine
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